

Application of the AT Research Capabilities:

Investigation of Diesel Soot Oxidation and of the Catalysts Degradation

Alex Yezerets, Neal Currier

Cummins Inc.

DEER, August 29th 2002

Outline:

Currenins

- Diesel soot oxidation
 - = f (soot origin/properties)
 - $= f(O_2/H_2O)$
 - $= f(NO_2)$

TGA

- Catalysts degradation
 - Micro-reactor probing
 - Localized heat evolution (Spaci-MS)

Overview of Diesel Soot Oxidation Study (*)

Different samples of soot:

- differences in light-off of diesel soot samples (up to $\sim 40^{\circ}$ C)
- large difference with the model soot sample (quantitatively and trends)

Effect of H₂O on oxidation by O₂

- synergistically boosts soot oxidation (lowered "light-off" by $\sim 40-80$ °C)
 - diesel exhaust contains enough H₂O
 - dry air (e.g., compressed air for partial flow regen.) requires higher temp.

(*) SAE Paper #2002-01-1684

Overview of Diesel Soot Oxidation Study

• Effect of NO₂: [NO₂ mass flux]/[soot loading] ratio

- at low ratio (e.g., heavily loaded trap), NO₂ is depleted at low T; then active increase in temperature provides only marginal enhancement until "O₂-mechanism" lights off (>500°C).

 \Rightarrow Heavily loaded trap or low NO₂: active regen. requires T>500°C

Summary - Soot Oxidation

- Equipment and methodology for the quantitative studies of soot oxidation were demonstrated.
 - Cross-validation using multiple *techniques* (temperature-programmed, isothermal, step-response) and *tools* (Micro-Reactor, TGA).

• Initial findings:

- Complex promotional effect of H₂O on diesel soot oxidation by O₂:
 - effect is substantial, synergistic, non-linear
- Difference between soot samples:
 - diesel samples: similar trends, but quantitative differences
 - diesel vs. model: vast differences (quantitatively and trends)
- Also observed: changes in soot reactivity during oxidation process

Work underway:

- DPF cores loaded with soot on an engine
- regenerated under the controlled conditions (pilot reactor)

Probing Catalyst Oxidation Activity

Objectives:

- Measure degradation of *field-tested* catalysts, determine the cause if possible
- Predict degradation at different conditions (e.g., as a f(T), gas composition) controlled aging of samples *in-situ*.

Experimental:

- Probe reaction of CO oxidation
- Single/several channels
 - short (~0.5") to minimize T
 gradient across the sample

- sufficient to prevent gas "bypass"
 - confirmed the absence of mass-transfer limitations
- Excellent reproducibility of sampling channels from the brick

Probing Catalyst Oxidation Activity

Example:

- Measured degradation: CO light-off increased by ~20°C
- Determined the cause:
 - Activation Energy (E_a) has changed insignificantly: no *chemical* changes to the active sites
 - Hence, the loss is due to the frequency factor decrease, i.e. lost the *number* of exposed sites *agglomeration*

Catalysts Deactivation

- Large temperature gradients possible in the operating AT devices
 - cause localized (propagating) deactivation
 - accurate measurements of the T-gradients is difficult
- SPACI-MS^(*) can been used to infer location of hot spots from the concentration profiles

(*) Details about the Spaci-MS technique were published at SAE, CLEERS

Acknowledgements

The authors are grateful to:

- DOE
 - for their support through the Freedom Car program
- Heather Eadler, Mark Branigin and Paula Madden
 - for the help with collecting the experimental data